
MAGNETOPHORETIC POTENTIAL OF A PLANE-ORDERED
SYSTEM OF FERROCYLINDERS. I. CIRCULAR CYLINDERS
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The magnetophoretic potential of a system of equidistant identical ferrocylinders packed in one plane and ex-
posed to a uniform magnetic field is studied. The influence of the structural step and the direction of mag-
netization of the structure are investigated.

With the use of a magnetic field combining a high intensity and a strong small-scale nonuniformity one can
separate very small weakly magnetic objects, including particles of cell suspensions, from the flow of a gas and a liq-
uid. The method of high-gradient magnetic separation has attracted attention in many spheres of activity, including
water and gas purification, purification of clays, chemical technologies, medicine, and biology, since the mid-1970s
(see [1–8]).

High-gradient magnetic filters are created in practice by application of a strong uniform magnetic field to a
volume in which small ferromagnetic bodies are distributed. The smaller the separated particles and the weaker their
magnetic properties, the stronger must be the external field and the smaller the size of the elements of the ferromag-
netic packing. Thus, for separation of red blood cells one uses bundles of ferromagnetic wire about 100 µm in diame-
ter [2, 5]. In flow systems, the efficiency of such a filtering structure is low since the probability of capture of
particles is low and decreases with increase in the pumping rate. Ordered (regular) filtering structures consisting of a
periodic packing of ferrocylinders have been created in a number of investigations [5, 8]. However there is no theo-
retical analysis of the efficiency of the periodic structure and its optimum configuration, and this analysis is the aim
of the present investigation. It is based on the noninductive approximation for description of the field distribution (the
mutual influence of the cylinders on the magnetization of each other is excluded) and on the notion of a magneto-
phoretic potential averaged along the direction of motion of a suspension of separated particles.

We consider a filtering structure representing a set of identical ferromagnetic cylinders of radius a, located in
one plane with step S. Let us introduce the Cartesian coordinates X, Y, Z; the axes of the cylinders lie in the plane
XY and are directed along Y. The origin of the coordinate system is located on the axis of one cylinder to which a
zero number is applied. We assume that the packing occupies the entire plane. The geometry of the packing is totally
determined by a set of the radius vectors of the cylinders’ axes, Rα = αSi.

The uniform external magnetic field H0 = H0e is applied across the packing plane (e = k) or in the packing
plane perpendicularly to the cylinders’ axes (e = i). On condition that the system is magnetized to saturation we can
disregard the mutual influence of the cylinders on the magnetization of each other. In this case, the self-field of the
filtering structure (distortion of the external field) is determined by the sum of the fields of individual cylinders.

The intensity of the field of a transversely magnetized infinite cylinder (with a number α) on the line A(x, y)
beyond the cylinder is given by the relations

Hα
′  (A) = 2πMshα ,   hα (A) = − 

1

rαA
2  


e − 

2

rαA
2  (erαA) rαA




 ,   rαA = (x − αs) i + zk , (1)

in which the distances x, z, and rαA are measured in the radii of the cylinder. The total field of the structure will be
written in the form

Journal of Engineering Physics and Thermophysics, Vol. 76, No. 6, 2003

A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str.,
Minsk, 220072, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 76, No. 6, pp. 70–74, November–De-
cember, 2003. Original article submitted March 3, 2003.

1062-0125/03/7606-1277$25.00  2003 Plenum Publishing Corporation 1277



H (A) = H0 + H′ (A) ,   H′ (A) = 2πMsh (A) ,   h (A) =  ∑ 

α

 hα (A) . (2)

If the filtering structure is immersed in a suspension of separated particles, a small (as compared to the cyl-
inder diameter) particle possessing a magnetic susceptibility χ, having a volume v, and located in a continuum with a
susceptibility χ0 is acted upon, in a nonuniform magnetic field, by the force

F = 
1
2

 ∆χv∇ H
2
 , (3)

where ∆χ = χ − χ0. Taking into account the uniformity of the external field, we reduce (3) to the form

F = 
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 . (4)

Next, following [9], we introduce the magnetophoretic potential of the system according to F = −∇Φ :
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 . (5)

Employing, as the scale, the value of the magnetophoretic potential of the self-field of an individual cylinder at its for-
ward point

Φ∗
 = 

1
2

 ∆χv (2πMs)
2
 ,

we write the dimensionless potential ϕ = Φ ⁄ Φ∗  in the form

ϕ = ϕ1 + ϕ2 , (6)

where

ϕ1 = − h
2
 ,   ϕ2 = − Peh ,   P = 

H0

πMs
 . (7)

It is noteworthy that the quantity Φ∗  employed for making the potential dimensionless can be positive or
negative together with the quantity ∆χ, whose sign depends on the magnetic properties of the carrier liquid. However,
for any practical purposes it is convenient to consider ∆χ as the effective susceptibility of particles suspended in a
nonmagnetic medium and to speak of paramagnetic (∆χ > 0) and diamagnetic (∆χ < 0) particles. Then the magneto-
phoretic potential made dimensionless by the method adopted refers to paramagnetic particles, and that taken with an
opposite sign refers to diamagnetic particles. In other words, paramagnetic particles move toward the minimum of the
potential ϕ while diamagnetic particles move toward its maximum.

The quantity ϕ1 expresses the magnetophoretic potential of the self-field of the filtering structure. In particu-
lar, if the cylinders are manufactured from a hard magnetic material with remanence Ms, the quantity ϕ1 comprises the
total potential of the system with a switched-off external field. The quantity ϕ2 represents a result of the interference
of the self-field and the external field. We define ϕ1 and ϕ2 as the intrinsic and interference magnetophoretic poten-
tials. There are significant qualitative differences between them. First, the intrinsic potential is strictly negative and
hence has the attraction of paramagnetic particles to the structure and the repulsion of diamagnetic particles as its ef-
fect. The interference potential can change its sign at different points above the structure, thus creating prerequisites
for sedimentation of diamagnetic particles. Second, the value of the intrinsic potential of the structure (naturally, on at-
tainment of magnetic saturation) is independent of the external-field intensity, whereas the interference potential in-
creases in proportion to H0. We recall that consideration is given to the state of magnetic saturation of cylinders. Since
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the saturation is attained in the external field exceeding the degaussing field of the cylinder magnetified to saturation
(H0 > 2πMs), relation (6) should be considered for P ≥ 2. In particular, a field of 10 kOe is required for saturation of
cylinders of pure iron (Ms = 1700 G).

Employing the relations obtained, we consider the magnetophoretic properties of a system magnetized in the
plane or across the plane of the magnetic structure. Because of the periodic arrangement of the cylinders, the value of
the potential is repeated along x at a distance equal to a structural step. Therefore, it is sufficient to consider the re-
gion −s ⁄ 2 ≤ x ≤ s ⁄ 2.

Let us take the case of longitudinal magnetization (e = i). Introducing the relative coordinates x̂ = x/s and ẑ
= z/s, we write the nonzero components of the self-field (2) in the form

hx
(N)

 = s
−2

N (x̂, ẑ) ,   N (x̂, ẑ) =   ∑ 
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2
 . (8)

Fig. 1. Field of magnetophoretic force for dense (s = 2) (I) and sparse (s =
4) (II) packings of cylinders; a) force field of the intrinsic potential (P = 0);
b and c) force fields of the longitudinally and transversely magnetized system
(P = 3).
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The infinite sums in these relations can be represented in the form of a combination of elementary transcendental func-
tions A(x̂) = cot (πx̂) and B(ẑ) = coth (πẑ):
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2)2  ,   T = 
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 − 1)
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2)2  . (9)

For the components of the magnetophoretic potential of the longitudinally magnetized structure we have
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In the case of transverse magnetization (e = k) we analogously arrive at the result

hx
(M)

 = s
−2

T (x̂, ẑ) ,   hz
(M)

 = − s
−2

N (x̂, ẑ) ,   ϕ1
(N)

 = − s
−4

I (x̂, ẑ) ,   ϕ2
(M)

 = Ps
−2

N (x̂, ẑ) . (11)

Comparing relations (10) and (11), we infer that the intrinsic magnetophoretic potentials of the longitudinally
and transversely magnetized structures coincide, whereas the interference potentials change their sign with the direction
of magnetization. To obtain a general idea of the magnetophoretic properties of a system we construct the field of the
magnetophoretic force fm = −∇ϕ  for different directions of magnetization, structural steps, and magnetizing-field inten-
sity. The field of magnetophoretic force for dense (s = 2) and sparse (s = 3) packings of cylinders is shown in Fig.
1. As we see, in the remanence field of the cylinders the entire surface of them attracts paramagnetic particles and re-
pels diamagnetic particles. Paramagnetic particles are attracted most intensely in the hollows between the cylinders. In
longitudinal magnetization, the attraction of paramagnetic particles is enhanced in hollows and is replaced by repulsion
on protrusions (here diamagnetic particles are attracted). We note that the force of diamagnetic attraction on protru-
sions is much smaller than the force of paramagnetic attraction in hollows. In transverse magnetization of the system,
paramagnetic particles, conversely, are attracted to the protrusions whereas diamagnetic particles are pulled into the
hollows. Comparing the force of diamagnetic attraction on the protrusions in the case of longitudinal magnetization
and that in the hollows in the case of transverse magnetization, we can infer that the latter configuration is more fa-
vorable for separation of diamagnetic particles.

In selecting the direction of motion of the suspension of separated particles, one should take into account such
a magnetophoretic characteristic of the filtering structure as the magnetophoretic potential averaged along this direction
[9]; this potential determines the accumulation of the effect of displacement of particles in their motion in the field of
a variable magnetophoretic force. In the system in question, the averaged potential coincides with the running potential
ϕ(x, z) in the case of suspension flow along the cylinders, so that we have a monotone movement of particles in the
plane of action of the magnetophoretic force (plane x, z) in the process of motion along y. In laminar suspension flow,
the velocity field of particles in the plane x, z coincides with the vector fields (Fig. 1) of the magnetophoretic force.
We note that in this situation nothing prevents the separated particles from being removed by the liquid flow. Conse-
quently, it can be employed in continuous schemes in which detachment of a part of the particle-enriched flow is or-
ganized at the outlet from the filter. Sedimentation of particles in the filter is possible in the case of suspension flow
across the cylinders in the x direction. Here, the magnetophoretic force prevents the particles accumulated in the hol-
lows from being removed. Since the direction of the magnetophoretic force changes in the process of movement of
particles across the cylinders above the layer surface (z > 1), the effect of their separation in the hollows from the ex-
ternal region is determined by the potential average over the line z = const:

 ϕ
__

 (z) = 
1
s

  ∫ 

−s ⁄ 2

s ⁄ 2

 ϕ (x, z) dx .

Let us consider the contribution of the alternating interference component to ϕ
__

. In the case of longitudinal
magnetization it can be represented in the form
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ϕ
__

2 = − 
P
s

   ∫ 

−s ⁄ 2

s ⁄ 2

     ∑ 

α=−∞

∞

  hαx .

Replacing the order of summation and integration in this relation and taking into account that the integral of
the field hαx of an arbitrary particle α over the period of the structure above the central particle (α = 0) is equal to
the integral of the field of the central particle over the period of the structure above the particle α, i.e.,

    ∫ 

−s ⁄ 2

s ⁄ 2

   hαx dx =      ∫ 
s(α−1 ⁄ 2)

s(α+1 ⁄ 2)

    h0xdx ,

we find

ϕ
__

2 (z) = − 
P
s

  ∫ 

−∞

∞

 h0xdx .

Computation of the integral in this relation yields a zero result, so that the interference component exerts no influence
on the average magnetophoretic potential in motion of the suspension along the x axis. In the case of transverse mag-
netization the contribution of the interference component to the average-along-x potential also turns out to be equal to
zero. Thus, if the suspension flows in the x direction, the magnetic structure above the layer surface (z > 1) attracts
paramagnetic particles and repels diamagnetic particles in equal measure in longitudinal and transverse magnetization.
The diagram of the filter with flow and magnetization along the x axis can be used for confinement of paramagnetic
particles in the filter. For confinement of diamagnetic particles one can use periodic regimes including alternating cy-
cles of sedimentation at rest and flow in continuous transverse magnetization.

Let us consider in greater detail the properties of the average magnetophoretic force f
_
m = −dϕ

__
 ⁄ dz. Figure 2

shows the dependence of its absolute value (the average force is negative, which means the attraction of paramagnetic
particles to the structure) on the distance for different values of the structural step s. (We recall that once the magnetic
saturation of the cylinders is attained, the average potential is independent of the intensity of the field applied.) Figure
3 gives the dependence of the average force on the structural step at the distances z = 1, 1.5, and 2. As follows from

Fig. 2. Absolute value of the average magnetophoretic force  f
_
m  vs. distance

z to the plane of the cylinders’ axes for different values of the structural step:
s = 2 (1), 2.5 (2), 3 (3), and 6 (4).

Fig. 3. Average magnetophoretic force f
_
m vs. structural step at different dis-

tances to the plane of the cylinders’ axes: z = 1 (1), 1.5 (2), and 2 (3).
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the data in Fig. 2, the value of the average force decreases exponentially, in practice, with increase in the distance.
Sparseness of the structure (increase in s) leads to a broadening of the zone of action of the magnetophoretic force.
When the sparseness is small, the absolute value of the average force on the plane z = 1 increases but then decreases,
passing through the maximum for s C 2.75. At the distance from the plane of the cylinders’ axes, equal to the cylinder
diameter, the average force is equal to zero, in practice, in the case of a dense packing and it comprises a considerable
value when the structural step increases to s = 4 (Fig. 3). We can infer that the optimum step of the structure in sepa-
ration of paramagnetic particles in the transverse flow is three to four radii of the cylinder. This conclusion is tentative
in character, since we have not considered the features of separation due to the hydrodynamics of the suspension in
different methods of organization of its flow through the filter.

This work was partially financed by the Belarusian Republic Foundation for Basic Research (project T03-204).

NOTATION

S, step of packing of ferrocylinders, cm; a, cylinder radius, cm; s, dimensionless step of packing of ferrocylin-
ders, s = S/a; H0, intensity of the external magnetic field, Oe; e, unit vector in the direction of the external magnetic
field; Ms, saturation magnetization, G; P, dimensionless field intensity, P = H0/(πMs); α, cylinder No.; X , Y, Z,
Cartesian coordinates; x, z, dimensionless coordinates (in cylinder radii); x̂, ẑ, dimensionless coordinates measured by
the structural step; i and k, unit vectors of the Cartesian coordinates system on the x and z axis; R, radius vector;
rαA, dimensionless radius vector from the cylinder axes to the point A(x, z); χ, magnetic susceptibility of the separated
particles; χ0, magnetic susceptibility of the carrier liquid; v, particle volume, cm3; ∆χ = χ − χ0; Φ and ϕ, dimensional
and dimensionless magnetophoretic potentials; ϕ1 and ϕ2, components of the magnetophoretic potential; ϕ

__
, average di-

mensionless magnetophoretic potential; F, force, g⋅cm⋅sec−1; f, dimensionless force; A, B, N, T, and I, functions of the
dimensionless coordinates x̂ and ẑ. Subscripts: s, saturation; m, magnetization.
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